Factorial of a number is defined as the product of natural numbers starting from 1 to the number that we want to find factorial for. Mathematically, it is defined as follows.
n! = 1*2*3*4* . . . . . .*(n-1)*n
For example, 5!= 1*2*3*4*5=120
Algorithm or Mathematical Generating Function can be written as follows.
f(n)= 1 if n=0;
f(n)= n*f(n-1) if n>0; It is very easy to transform above algorithm or generating function into program that uses Recursion. Below one is the implementation in Java.
Factorial of a given number using Recursion in Java
Here is the implementation for Factorial of a number using recursion
package com.jminded.recursion;
public class FactorialUsingRecursion {
/**
* <p>Factorial using Recursion</p>
* @author Umashankar
* {@link https://jminded.com}
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(factorial(3));
System.out.println(factorial(0));
System.out.println(factorial(-7));
}
/**
* Recursion :: A method calls to it self
* <p>Mathematical defintion of factorial</p>
*
* f(n)= 1 if n=0;
* f(n)= n*f(n-1) if n>0;
*
* @param n
*/
public static int factorial(int n){
//base case
if(n==0)
return 1;
//recursive case
else if(n>0)
return n*factorial(n-1);
//for negative numbers and non integers factorial is undefined.
else
return -1;
}
}